Recurrent frontal slicks of a coastal ocean upwelling shadow

نویسندگان

  • J. P. Ryan
  • A. M. Fischer
  • R. M. Kudela
  • M. A. McManus
  • J. S. Myers
  • J. D. Paduan
  • C. M. Ruhsam
  • C. B. Woodson
  • Y. Zhang
چکیده

[1] Marine ecosystems are greatly influenced by the structure and dynamics of fronts. In coastal upwelling systems, frontogenesis occurs frequently by upwelling and transport of cold water and warming in sheltered “upwelling shadow” retention sites. Monterey Bay, in the California Current upwelling system, hosts a dynamic upwelling shadow environment. Using a decade of satellite synthetic aperture radar (SAR) observations with ancillary remote sensing and in situ data, we describe recurrent surface slicks that develop along the seaward periphery of the Monterey Bay upwelling shadow, and we examine their relationships with fronts. Slick median dimensions, 17.5 km long and 0.8 km wide, describe their elongated structure. Although the typical pattern is a single slick, multiple slicks may concurrently develop in association with different types of fronts. Repeated volume surveys through a front, underlying a slick, revealed lateral mixing and interleaving of regional water types. Velocity fields from coastal HF radar show that slicks may coincide with a variety of surface circulation patterns, that they may extend contiguously across regions having very different surface velocity, and that they may be separated from the shear front of upwelling filaments by 5–10 km. Slicks occur in all seasons and may coincide with both upwelling and downwelling wind forcing. Surfactant accumulation in small‐scale convergence zones is indicated as the primary mechanism of slick formation, not ocean current shear or small‐scale air‐sea coupling. The results of this study emphasize the role of upwelling system fronts in creating small‐scale structure and dynamics that influence plankton ecology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Making of a Productivity Hotspot in the Coastal Ocean

BACKGROUND Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predator...

متن کامل

The Long-Term Ecosystem Observatory: An Integrated Coastal Observatory

An integrated ocean observatory has been developed and operated in the coastal waters off the central coast of New Jersey, USA. One major goal for the Long-term Ecosystem Observatory (LEO) is to develop a real-time capability for rapid environmental assessment and physical/biological forecasting in coastal waters. To this end, observational data are collected from satellites, aircrafts, ships, ...

متن کامل

Autonomous Four-Dimensional Mapping and Tracking of a Coastal Upwelling Front by an Autonomous Underwater Vehicle

Coastal upwelling is a wind-driven ocean process that brings cooler, saltier, and nutrient-rich deep water upward to the surface. The boundary between the upwelling water and the normally stratified water is called the “upwelling front.” Upwelling fronts support enriched phytoplankton and zooplankton populations, thus they have great influences on ocean ecosystems. Traditional ship-based method...

متن کامل

The future of coastal upwelling in the Humboldt current from model projections

The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order t...

متن کامل

Numerical Simulation of Internal Kelvin Waves and Coastal Upwelling Fronts*

Two three-dimensional primitive equation numerical ocean models are applied to the problem of internal Kelvin waves and coastal upwelling in the Great Lakes. One is the Princeton Ocean Model (POM) with a terrain-following (sigma) vertical coordinate, and the other is the Dietrich/Center for Air Sea Technology (DIECAST) model with constant z-level coordinates. The sigma coordinate system is part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010